If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-252=0
a = 1; b = 8; c = -252;
Δ = b2-4ac
Δ = 82-4·1·(-252)
Δ = 1072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1072}=\sqrt{16*67}=\sqrt{16}*\sqrt{67}=4\sqrt{67}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{67}}{2*1}=\frac{-8-4\sqrt{67}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{67}}{2*1}=\frac{-8+4\sqrt{67}}{2} $
| 7f-6=9f+8 | | 8q+5=-91 | | -21/3+2k=1/6 | | 3(3x)=33x= | | 11z-23=78 | | 2=0.7^x | | 12+2n=2 | | 3(5x-1)=2(7x+2) | | 2400/x=2400/(x+1) | | 185=5n+5(7+4n)= | | 116+55+x=180 | | 7w-4=32 | | x+145+80+95+100=540 | | 2(3-x)+x=6-x | | 7^x=1/64 | | 6x-6+3=3 | | x/8-1/2=5/4 | | 4=6n-2 | | 4n+2=-2 | | 10-7m=24 | | 3(2/3x)+3(1/3)=3(-5/3) | | X-6=11x-30 | | -99=-5(-7x+7)+6= | | 71=-9-8n | | -7-4m=29 | | -10p-2=-52 | | 8b+4=-52 | | -99=-5(-7x+7+6= | | -88=-7-9n | | 0=50-(3.1*d) | | 80+40+x+x=180 | | y–11=-4 |